

California Integrated Waste Management Board

Life Cycle Assessment and Economic Analysis of Organic Waste Management and GHG Reduction Options

July 22, 2009

Presentation Summary

- Introduction
 - Economic Study Objectives
 - Economic Study Boundaries
 - Economic Data
- Economic Model
 - Methodology
 - Key Assumptions
 - Total Waste System Net Costs
- Results
- Next Steps

Economic Study Objectives

Economic Analysis

- Determine \$/ton and \$/MTCO2e for 7 organics and recycling options
- Five study years (2006, 2010, 2015, 2020, 2025)
- 3 California regions and the state

Input/Output Model Analysis

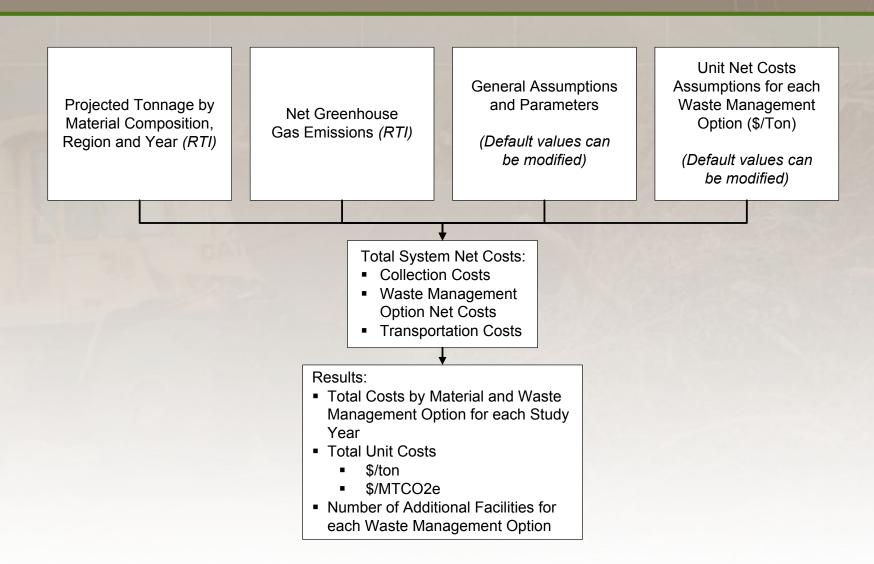
- Determine direct and indirect impacts of 7 organics and recycling options
- Study year 2006
- 3 California regions and the state

Economic Study Boundaries - Economic Analysis

- Economic model assumptions needed to be consistent with LCA
 - Revenues and costs captured collection, processing, transportation to end use and final disposal.
 - Financial pro formas created for on a <u>per material</u> basis for:
 - 14 different materials
 - 5 study time periods
 - 3 regions and the state (total of 4)
 - 7 solid waste management options

Economic Study Boundaries - Economic Analysis

- Economic analysis did not include a detailed analysis of waste option technology cost differentials, i.e. average values or industry surrogates were used.
- GHG tool will include some flexibility to modify values to better reflect changes in key assumptions such as costs and revenues.


Economic Study Boundaries - Input/Output Model Analysis

- Used IMPLAN model.
- Input/Output Model Analysis focused on the 7 options and did not include collection and transportation components.
- Analysis conducted on a state and regional basis.
- Worked predominantly with data used in the financial analysis.

Economic Data

- Most significant challenge of this project was obtaining high quality data on which to base projections.
- Data used included a mix of:
 - Data received from CA-based operating facilities
 - Data from CA-based studies commissioned by CA-based utilities
 - Interviews with CA-based business involved in various aspects of solid waste management
 - Data developed by R.W. Beck
 - Data from published sources such as industry reports and articles
 - Vendor-provided data

Economic Model

Key Assumptions -Tonnage Projection Methodology

- Baseline 2006 tonnage disposed.
- Overall composition data from the Board's "Statewide Waste Characterization Study", December 2004.
- Projections based on Board projections through 2025.

- Reviewed landfill diversion policies for each region.
- Assumes waste composition does not change in future years.
- No data available to determine the flow of waste between regions.

Key Assumptions - General

Landfilled Tonnage:

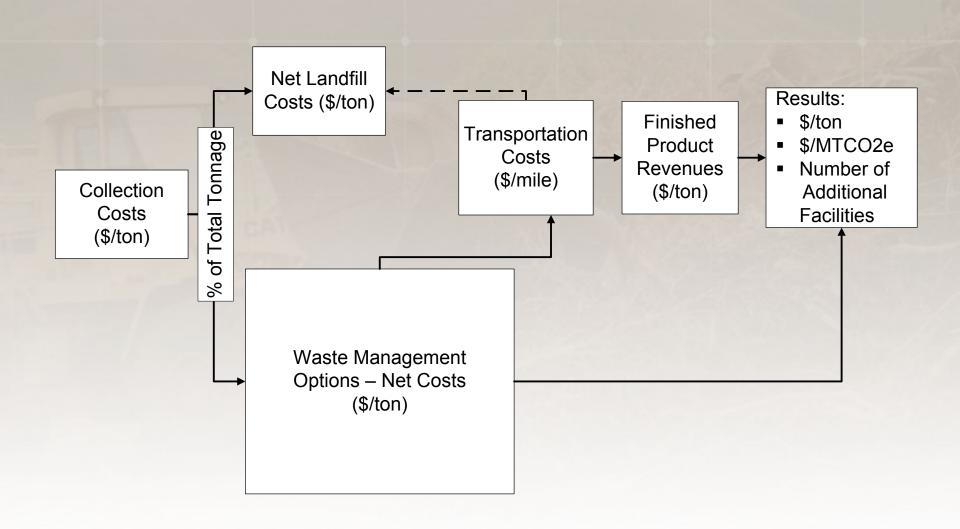
- Reviewed landfill diversion policies for each region.
- Assumes 75% max.
 diversion of landfilled
 tonnage by 2025 for
 the state and regions.

Key Assumptions -Tonnage to Options Methodology Example

	<u> </u>	AD	(2)			BTE (Chi	Chipping/Grinding			(Comp	osting	9	18	Recy	cling			W	ΓΕ	
	2010	2015	2020	2025	2010	2015	2020	2025	2010	2015	2020	2025	2010	2015	2020	2025	2010	2015	2020	2025	2010	2015	2020	2025
California State (1)	7														1							11//	7.7	
ORGANICS					783																			
Leaves and Grass	Υ	Υ	Υ	Υ	N	N	N	N	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	N	N	N	N	Υ	Υ	Υ	Υ
Prunings and Trimmings	N	N	N	N	Υ	Υ	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	N	N	N	N	Υ	Υ	Υ	Υ
Southern Bay Area (1)																								
ORGANICS																								
Leaves and Grass	Υ	Υ	Υ	Υ	N/A	N	N	Ν	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	N	N	N	N	N/A	N/A	Υ	Υ
Prunings and Trimmings	N	N	N	N	N/A	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	N	N	N	N	N/A	N/A	Υ	Υ

Notes:

⁽¹⁾ All material categories will have some portion of the tonnage sent to landfills.


[&]quot;N/A" means this option does not exist or is likely not available for this region during this time period.

⁽²⁾ AD includes the use of excess digester capacity at existing WWTP, dairy farms and stand alone units.

Total Waste System Net Costs

- Collection Costs
- Waste Management Option Net Costs
 - Revenues
 - Operating and Maintenance Costs
 - Annual Capital Costs
 - Additional Facility Costs
- Transportation Costs
 - Product to Foreign Markets
 - Product to Domestic Markets
 - Residuals

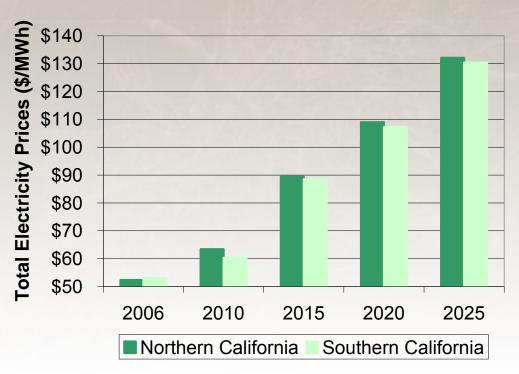
Total Waste System Net Costs

Key Assumptions - Collection

- Collection Split (Based on 2004 CIWMB Waste Characterization Study)
 - 40% Residential
 - 60% Commercial

- Assumed \$150/ton for residential collection
- Assumed \$120/ton for commercial collection
- Factors developed from secondary research and project team experience.

Total Waste System Net Costs - Revenues


- Based on data collected and modeled on a \$/ton basis.
- Revenue Projections:
 - Operating Revenues (Tipping Fees): General inflation
 - Electricity and Biogas Revenues: Market price of energy/capacity and natural gas projections developed by R. W. Beck
 - Recyclables Revenues: 7% annual increase
 - Sale of Soil Amendment, Compost and Other Revenues: General inflation
 - Carbon Credits Revenues: Included for anaerobic digestion, BTE and composting

Key Assumptions -Revenue Projections for Options

Energy Revenues:

 Based on change in market price projections

for Northern and Southern California

Total Waste System Net Costs - Revenues

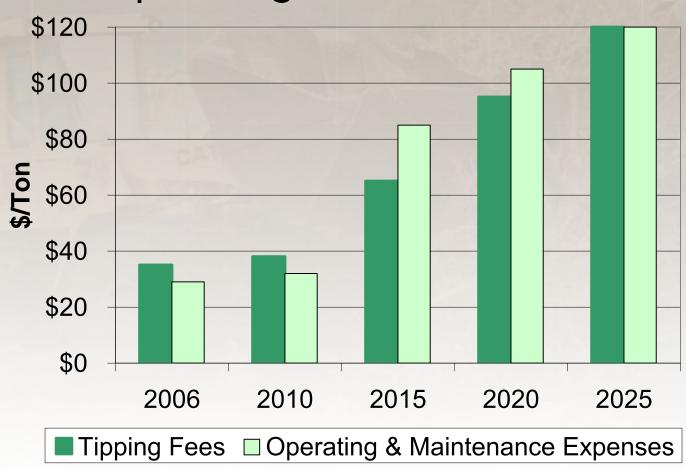
- Revenue projections were only developed for the waste management options.
- No revenues were projected to recover the collection and transportation component of costs.
- Regional differences were reflected using the California Wage Price Index if data was not available.
- Changes in technology and operations are reflected in projected revenues.

Total Waste System Net Costs - Operating and Maintenance Costs

- Based on data collected and modeled on a \$/ton basis.
- Operating cost projections based on general inflation.
- Assumed to be mostly labor and O&M expenses; no depreciation and debt service.
- Changes in technology or operations are reflected in projected operating costs if data was available.
- Regional differences were reflected using the California Wage Price Index if data was not available.
- Costs were compared to the project team's experience on similar projects and vendor estimates to gauge the degree of reasonableness.

Key Assumptions -Future Technology Changes

Composting


Year	Windrow	Aerated Static Pile
2006	100%	0%
2010	100%	0%
2015	75%	25%
2020	50%	50%
2025	50%	50%

Anaerobic Digestion

Year	Wastewater Treatment Plant Expansion	Stand Alone
2006	100%	0%
2010	100%	0%
2015	75%	25%
2020	50%	50%
2025	50%	50%

Key Assumptions -Future Operation Changes

Mesquite Regional Landfill

Total Waste System Net Costs - Annual Capital Costs

- Used estimates of annual capital expenditures provided for the options.
- Used reported or estimated debt service or depreciation as a surrogate for annual capital costs.
- Unit capital costs were compared to the project team's experience on similar projects and vendor estimates to gauge the degree of reasonableness of the unit capital costs.
- Cost projections based on general inflation.
- Changes in technology or operations are reflected in projected capital costs if data was available.
- Regional differences were reflected using the California Wage Price Index if data was not available.

Total Waste System Net Costs - Additional Facility Costs

- Existing capacity information was not available.
- Assumes existing capacity through 2010 with new facilities needed starting in 2015.
- Assumes no WTE facilities until 2020 assuming a longer lead time for siting and permitting in the SBA and SCV regions.
- No new landfills assumed except for the Mesquite landfill.
- Assumed average future facility sizes and capital cost projections based on data collected and project team experience.
- Includes cost for land estimated at 5% of capital costs.

Key Assumptions -Additional Facility Costs

Facilities	Tons Per Year
Landfill	n/a
Anaerobic Digestion	25,000
Biomass-to-Energy	100,000
Chipping/Grinding	60,000
Composting	100,000
Recycling	114,000
Waste-to-Energy	620,000

Anaerobic Digestion Net Costs

- 18 data points primarily from CA-based studies.
- Assumed WWTP operations for early years; stand alone
 AD operations for later years.
- Revenues included tip fees, sale of compost, recyclable materials sales, carbon credits and energy sales.
- Operating costs included labor and maintenance costs.
- Capital costs based on stand-alone
 AD facilities for new facilities.
- Average new facility size estimated at 25,000 tons per year.

Biomass-to-Energy Net Costs

- Based on 1 data point and R.W. Beck BTE experience.
- Data received was relatively high quality, CA-based, comprehensive and reflective of standard BTE facilities in CA.
- Revenues included sale of energy and carbon credits.
- Operating costs included labor and maintenance.
- Annual capital costs estimated based on annual replacements.
- Average new facility size estimated at 100,000 tons per year.

Composting Net Costs

- Costs were developed for windrow and ASP technologies.
- 8 surveys completed for windrow technologies.
- ASP costs estimates were developed based on discussions with industry representatives.

- Revenues included tip fees, cogeneration fuel sales, sale of finished compost, carbon credits.
- Operating costs included labor and maintenance.
- Average new facility size estimated at 100,000 tons per year.

Chipping/Grinding Net Costs

 Chipping/grinding costs estimates were developed based on discussions with industry representatives.

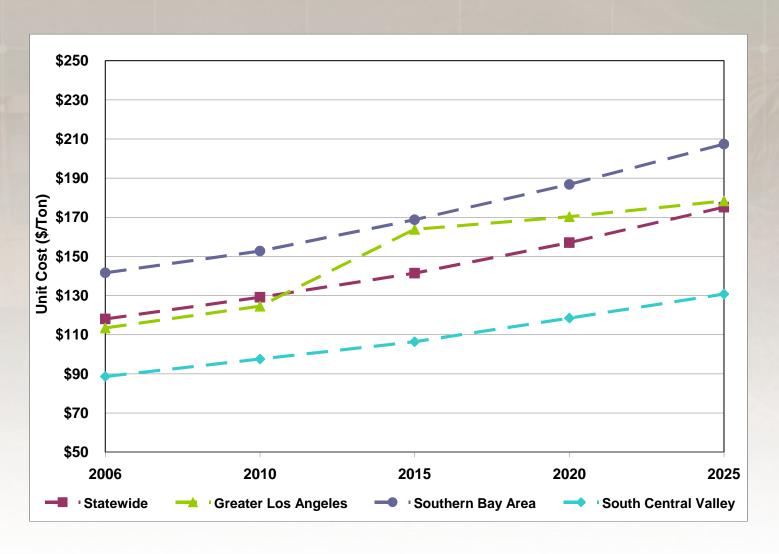
- Revenues included tip fee revenues and cogeneration fuel sales.
- Operating costs included labor and maintenance.
- Average new facility size estimated at 60,000 tons/year.

MRF, C&D and Self Haul/Baling Net Costs

- 14 surveys received mainly from large, automated MRFs.
- 2007-2008 Materials Recycling and Processing in the United States, Governmental Advisory Associates used as a resource.
- Average new facility size: 114,000 tons/year
- Density factors applied to determine C&D and self haul/baling revenues and costs.
- Revenues included tip fee revenues, material sales.
- Operating costs included labor and maintenance.

Waste-to-Energy Net Costs

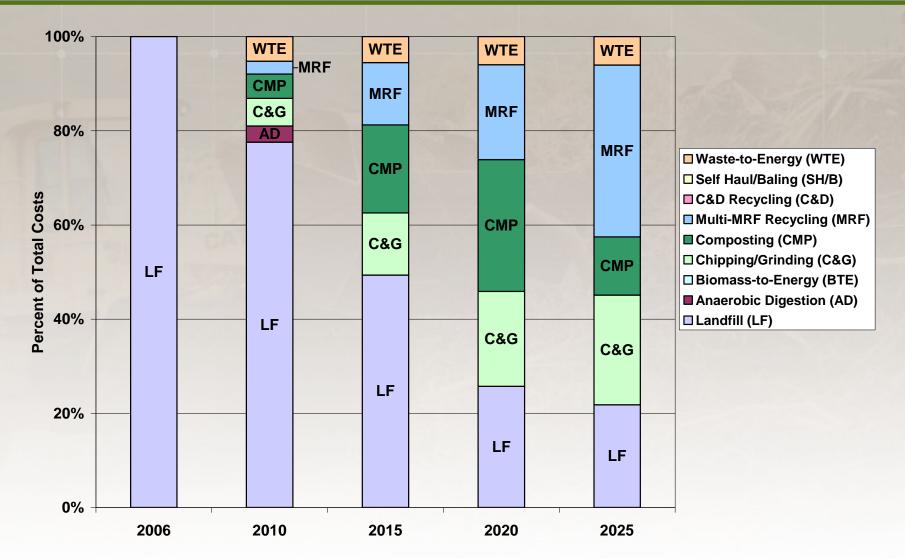
- Obtained partial data from public sources for 3 CAbased WTE facilities.
- Used R.W. Beck experience to develop data as necessary.
- Revenues included tip fees and sale of electricity.

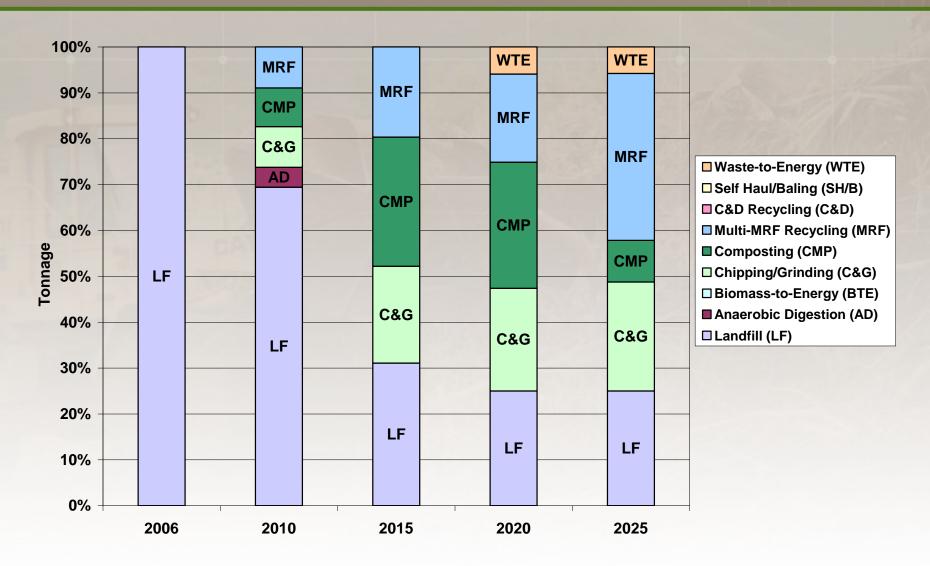


- Operating costs included labor and maintenance.
- Average new facility size estimated at 620,000 tons per year.

5 Scenario Analyses

- Baseline Landfill
- Minimum Cost
- Minimum GHG
- Minimum Energy
- Minimum Cost Meeting GHG Targets

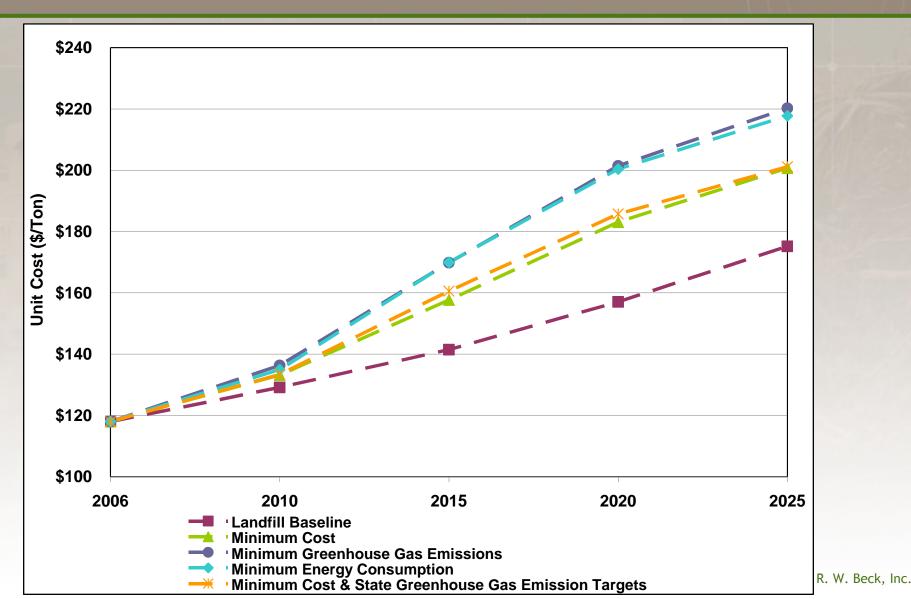

Scenario Analyses Results -Landfill Baseline Scenario(\$/ton)


Sample Minimum Cost Calculation

				ng/Grinding -		
		Total Lif	e Cycle Costs	by Material	Type and Pro	cess (\$000)
Line		2006	2010	2015	2020	2025
1	C&D - Lumber					
2	Total C&D - Lumber Tonnage	n/a	4,443,543	4,833,550	5,654,787	5,613,564
3	Tonnage Landfilled	n/a	3,554,834	2,658,452	1,696,436	1,403,391
4	Percent of Waste Material Tonnage	n/a	80.0%	55.0%	30.0%	25.0%
5	Tonnage for Each Waste Management Option	n/a	888,709	2,175,097	3,958,351	4,210,173
7	Percent of Total Waste Material Tonnage	n/a	20.0%	45.0%	70.0%	75.0%
8		3-34		35 53 65		
9	Collection Costs					
10	Residential Unit Cost (\$/Ton)	n/a	\$165	\$186	\$209	\$235
11	Residential (Percent of Tonnage)	n/a	40%	40%	40%	40%
12	Residential Collection Costs (\$000)	n/a	\$58,620	\$161,570	\$331,080	\$396,430
13	Commercial Unit Cost (\$/Ton)	n/a	\$132	\$149	\$167	\$188
14	Commercial (Percent of Tonnage)	n/a	60%	60%	60%	60%
15	Commercial Collection Costs (\$000)	n/a	\$70,330	\$193,930	\$397,340	\$475,670
16	Net Processing Income (Cost)	1				
17	Unit Net Processing Income/(Cost) (\$/Ton)	n/a	\$7	\$8	\$9	\$10
18	Total Net Processing Income/(Cost)	n/a	\$6,220	\$17,400	\$35,630	\$42,100
19	Additional Facilities					
20	Average Facility Size (Tons)	n/a	n/a	60,000	60,000	60,000
21	Estimated Additional Facilities	n/a	n/a	36.3	29.7	4.2
22	Unit Additional Facilities Cost (\$/Ton)	n/a	n/a	\$21	\$24	\$27
23	Total Incremental Facility Costs (\$000)	n/a	n/a	\$45,680	\$42,800	\$6,800
24	Annual Capital Financing			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,
25	2006	n/a	n/a	n/a	n/a	n/a
26	2010	n/a	n/a	n/a	n/a	n/a
27	2015	n/a	n/a	\$3,670	\$3,670	\$3,670
28	2020	n/a	n/a	n/a	3,430	3,430
29	2025	n/a	n/a	n/a	n/a	550
30	Total (\$000)	n/a	n/a	\$3,670	\$7,100	\$7,650
31	Transportation Costs			, , , ,	. ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
32	Domestic Markets					
33	Truck Unit Cost (\$/Mile)	n/a	\$1.90	\$2.20	\$2.40	\$2.70
34	One Way Distance (miles)	n/a	10	10	10	10
35	Product as a Percent of Total Material Waste	n/a	99%	99%	99%	99%
36	Tons of Product	n/a	879.821	2.153.346	3,918,768	4.168.072
37	Total Product Transportation Costs	n/a	\$670	\$1.890	\$3,760	\$4.500
39	Residuals		\$ 0.0	÷ .,000	+0,.00	7.,000
40	Truck Unit Cost (\$/Mile)	n/a	\$1.90	\$2.20	\$2.40	\$2.70
41	One Way Distance (miles)	n/a	15	15	15	15
42	Residual as a Percent of Total Material Waste	n/a	1%	1%	1%	1%
43	Tons of Residuals	n/a	8.887	21,751	39.584	42.102
44	Total Residual Transportation Costs (\$000)	n/a	\$10	\$30	\$60	\$70
45	Total Costs (\$000)	n/a	\$123,410	\$343,690	\$703,710	\$842,220
46	Total Costs (\$/Ton)	n/a	\$139	\$158	\$178	\$200
47	Minimum Cost Ranking	n/a	1	1	1	Ψ200
		11/4		'_		<u>'</u> _

Scenario Analyses Results -Minimum Cost Scenario - State Options

Scenario Analyses Results -Minimum Cost Scenario - SBA Options


Scenario Analyses Results -Minimum Cost Scenario Add'l Facilities

		Anaerobic	Biomass-	Chipping/		Multi-MRF	C&D	Self Haul/	Waste-	
Year	Landfill	Digestion	to-Energy	Grinding	Compost	Recycling	Recycling	Baling	to-Energy	Total
2015	n/a	0.0	0.0	99.9	80.7	38.8	0.0	0.0	3.2	222.5
		100							48000	
2020	n/a	0.0	0.0	85.1	66.2	35.2	0.0	0.0	2.0	188.4
						1996				
2025	n/a	0.0	0.0	26.5	3.8	9.8	0.0	0.0	0.3	40.4
Total (2015-2025)	n/a	0.0	0.0	211.4	150.7	83.7	0.0	0.0	5.5	451.4

Scenario Analyses Results - Additional Facilities

	Landfill	Anaerobi c Digestion	Biomass -to- Energy	Chipping / Grinding	Composti ng	Multi MRF Recycling	C&D Recyclin g	Self Haul/ Baling	Waste- to- Energy	Total
Landfill		0								1
Baseline	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Minimum Cost	n/a	0.0	0.0	211.4	150.7	83.7	0.0	0.0	5.5	451.4
Minimum Greenhouse Gas Emissions	n/a	73.9	0.0	0.0	0.0	46.9	36.9	80.8	32.4	270.9
Minimum Energy Consumptio n	n/a	0.0	0.0	0.0	0.0	19.1	0.0	30.8	56.5	106.4
Minimum Cost & State Greenhouse Gas Emission		0.0	0.0	044.4	04.4	400.0		0.0		444.0
Targets	n/a	0.0	0.0	211.4	64.1	163.8	0.0	0.0	5.5	444.9

Scenario Analyses Results - Comparison Results (\$/ton)

Scenario Analyses Results - Minimum Cost Scenario (\$/MTCO2E)

Line	Change from Baseline					1/1
		2006	2010	2015	2020	2025
1	Total Costs (\$000)	n/a	n/a	n/a	\$1,393,250	\$1,387,390
2	MTCO2 _e Savings	n/a	1,570,236	2,491,321	(1,292,457)	(19,129,119)
3	\$/MTCO2 _e	n/a	n/a	n/a	\$1,078	\$73

•Change in 2020-2025 reflects shift from composting to MRFs as revenues from MRFs are high enough by 2025 to offset high transport costs relative to composting.

Scenario Analyses Results -Minimum Cost & GHG Targets Scenario (\$/MTCO2E)

Line	Change from Ba	aseline				
		2006	2010	2015	2020	2025
1	Total Costs	n/a	n/a	\$870,380	\$1,535,500	\$1,411,310
2	MTCO2 _e	n/a	802,948	(7,157,283)	(18,848,053)	(19,129,119)
3	\$/MTCO2 _e	n/a	n/a	\$122	\$81	\$74

•Change in 2015-2020 reflects shift from composting to MRFs in order to meet GHG targets.

Scenario Analyses Results Minimum GHG (\$/MTCO2E)

Line	Change from Ba	aseline				
	9	2006	2010	2015	2020	2025
1	Total Costs	n/a	\$295,670	\$1,289,880	\$2,375,640	\$2,446,210
2	MTCO2 _e	n/a	(6,932,802)	(16,735,113)	(30,279,333)	(31,646,331)
3	\$/MTCO2 _e	n/a	\$43	\$77	\$78	\$77

•This scenario yields the lowest \$/MTCO2e since the goal is max GHG reduction.

Scenario Analyses Results - Minimum Energy Scenario (\$/MTCO2E)

Line Change from Baseline											
- 25	8	2006	2010	2015	2020	2025					
1	Total Costs	n/a	\$239,530	\$1,295,420	\$2,317,750	\$2,313,140					
2	MTCO2 _e	n/a	(1,058,483)	(2,370,162)	(4,143,935)	(3,878,962)					
3	\$/MTCO2 _e	n/a	\$226	\$547	\$559	\$596					

•This scenario yields the highest \$/MTCO2e due to lower emission reductions relative to the other scenarios.

IMPLAN Results

- Direct Impacts
 - Largest value of production Landfills
 - Smallest value of production WTE
- Total Multiplier
 - Range on a statewide basis was 1.73-5.62
 - Lowest was chipping/grinding
 - Highest was WTE
- Results should be viewed as one indicator of economic feasibility.
- Difficult to project out longer than 5-6 years past the data reported due to changes in technology and consumer behaviors.

Next Steps

- Compile and prioritize stakeholder comments (August)
- Finalize report (September-October)

Questions and Answers

